EXPLORING GREEDY IN REAL
WORLD MATCHING

Zachary George, Professor: Eric Balkanski

INTRODUCTION TO THE RESEARCH
HIGHLIGHTED FACTS HERE

Even though greedy has the worst case out of all the

possible matching algorithms in this study it focuses Theoretically the greedy algorithm has the least

on figuring out why it is the most effective in real optimal worst-case run time

world capabilities. For instance, companies like In theory there would be better algorithms like HST (tree)
Uber/Doordash use greedy algorithm to match the Therefore, the research project is aimed at looking at

server (driver) to the user (person requesting). The why the greedy algorithm works in real-world situations

idea of greedy is essentially matching the newest In real-world situations it'd be two-dimensional data

user to the unmatched server. In experimental studies Therefore, the research was done on one-dimensional

there are real-time taxi with 10000 users and servers at first and then two-dimensional which represents what

and results are surprising cause even though its IR TR Sl D e

worst-case greedy beats out the other matching Through trial/testing we see the outcome of experiment
algorithms like HST and is almost on par with offline

matching (most effective however can’t be applied in CONCLUSIONS

real-world due to it always being online). Therefore, Therefore, the conclusion proves that greedy algorithm is optimal for
the goal of my project is to test why through figuring out how to match servers/users despite having the worst run
programming test trials in python that will allow me to time theoretically. As noted in the sample the ratio of one and two

dimensions are extremely close to the value of ~1 which means
greedy is super close to being optimal and is great for real-world
applications, the two-dimensional output can be referenced below,
and it shows this exact fact of how the optimal and greedy are both
close to 1 when you take the ratio of them which means that they
o are the around the same proving that greedy is great in a real world
scenario with receivers and servers being Uber drivers and those
o @ who call the Ubers. Furthermore, this can be applied to numerous
real-world applications where there are a server and receiver, and

@ e e e this research helps contribute to the fact that for data matching
greedy algorithm is optimal in these situations.

Greedy algorithm being bad because the path 7+12+6 is not the greatest sum (theoretical) Main meth Od Ca”ing tWO dimensional

use randomized data

two_dimensional_result = two_dimensional_random(

users_x wo_dimensional_result[0]

T
M E T H O D S users_y = two_dimensional_result[1]

Servers_x two_dimensional_result[2]

Servers_y two_dimensional_result[3]

The methods used for this study is python testing where essentially | s e
n _ _ _ greedy_two_dist = two_dimensional_greedy(users_x, users_y, Servers_x, servers_y)

utilized the PyCharm IDE. Then through using python made it so that it E + str(greedy_two_dist))

generated random users/servers as coordinate points and then apphed opt_two_dist = two_dimensional_opt(users_x, users_y, Servers_X, Servers_y)

the greedy algorithm. After that there was an optimal algorithm in "- = stelopt-tho. dist))

where it would find the optimal through methods defined, often looking

at the minimum value present in the randomly generated coordinate

(+ (evaluate(greedy_two_dist, opt_two_dist)))

p0|qts: Additionally, did it in a}.tvyo—dlmen.smnal scale which is more Output of two dimension greedy and opt-dlstance
realistic such and through utilizing the distance formula was able to get
a methodology similar to how companies like Uber/Doordash have Debugging greedy_dist in two dimensions 2.494578810497105
their set of users/servers and apply the algorithm [6.0, 0.1, 0.6, 0.6, 0.2, 0.7, 0.8, 0.3, 0.4, 0.7]
[6.6, 0.7, 0.9, 8.9, 0.5, 0.5, 6.7, 0.0, 0.4, 0.5]
OUTPUT ONE DIMENSION Debugging opt_dist in two dimensions 2.0171732803158715

result = random_instance() Here 1s the ratio i1n two dimension: 1.2366705601545922

()

Here 1s the ratio in two dimension: 1.4608315840172255 for 100 trials

users = result[0]

(

(wsors) "' REFERENCES +
Ak cangiat e ACKNOWLEDGEMENTS

ey teere sorveres 1. Yongxin Tong T Jieying She § Bolin Ding i Lei Chen § Tianyu
| | + str(greedy_dist)) Wo t Ke Xu Tt TSKLSDE Lab, NSTR, and IRI, Beihang

P e, e e University, China §The Hong Kong University of Science and
(+ str(evaluate(greedy_dist, opt_dist))) Technology, Hong Kong SAR, China IMicrosoft Research,

Main method above that is applied to one-dimension Redmond, WA, USA. 2016;9(12):1053-1064

Debugging random_lnstance

Debugging return [0] Acknowledgements: Columbia Summer Undergraduate Research

J.H436£109306 U.2L/1U260 U.0936: - ;

Debugging return [1] In collaboration with

[0.60859737 0.23708008 0.1109445 ©0.7675817 0.36849166 0.11883212

3988626 0.99282136 0.51043774 0.05816243] amazon

Debugglng greedy_dlst 1.502039410618122

Debugging opt_dist 1.3665776867860946

	Exploring Greedy in real world matching

